Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onsetreclem3.1 | |- F = ( x e. _V |-> { U. x , suc U. x } ) |
|
Assertion | onsetreclem3 | |- ( a e. On -> a e. ( F ` a ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsetreclem3.1 | |- F = ( x e. _V |-> { U. x , suc U. x } ) |
|
2 | eloni | |- ( a e. On -> Ord a ) |
|
3 | orduniorsuc | |- ( Ord a -> ( a = U. a \/ a = suc U. a ) ) |
|
4 | 2 3 | syl | |- ( a e. On -> ( a = U. a \/ a = suc U. a ) ) |
5 | vex | |- a e. _V |
|
6 | 5 | elpr | |- ( a e. { U. a , suc U. a } <-> ( a = U. a \/ a = suc U. a ) ) |
7 | 4 6 | sylibr | |- ( a e. On -> a e. { U. a , suc U. a } ) |
8 | 1 | onsetreclem1 | |- ( F ` a ) = { U. a , suc U. a } |
9 | 7 8 | eleqtrrdi | |- ( a e. On -> a e. ( F ` a ) ) |