Metamath Proof Explorer


Theorem onsetreclem3

Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)

Ref Expression
Hypothesis onsetreclem3.1
|- F = ( x e. _V |-> { U. x , suc U. x } )
Assertion onsetreclem3
|- ( a e. On -> a e. ( F ` a ) )

Proof

Step Hyp Ref Expression
1 onsetreclem3.1
 |-  F = ( x e. _V |-> { U. x , suc U. x } )
2 eloni
 |-  ( a e. On -> Ord a )
3 orduniorsuc
 |-  ( Ord a -> ( a = U. a \/ a = suc U. a ) )
4 2 3 syl
 |-  ( a e. On -> ( a = U. a \/ a = suc U. a ) )
5 vex
 |-  a e. _V
6 5 elpr
 |-  ( a e. { U. a , suc U. a } <-> ( a = U. a \/ a = suc U. a ) )
7 4 6 sylibr
 |-  ( a e. On -> a e. { U. a , suc U. a } )
8 1 onsetreclem1
 |-  ( F ` a ) = { U. a , suc U. a }
9 7 8 eleqtrrdi
 |-  ( a e. On -> a e. ( F ` a ) )