Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onsetreclem3.1 | |- F = ( x e. _V |-> { U. x , suc U. x } ) | |
| Assertion | onsetreclem3 | |- ( a e. On -> a e. ( F ` a ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsetreclem3.1 |  |-  F = ( x e. _V |-> { U. x , suc U. x } ) | |
| 2 | eloni | |- ( a e. On -> Ord a ) | |
| 3 | orduniorsuc | |- ( Ord a -> ( a = U. a \/ a = suc U. a ) ) | |
| 4 | 2 3 | syl | |- ( a e. On -> ( a = U. a \/ a = suc U. a ) ) | 
| 5 | vex | |- a e. _V | |
| 6 | 5 | elpr |  |-  ( a e. { U. a , suc U. a } <-> ( a = U. a \/ a = suc U. a ) ) | 
| 7 | 4 6 | sylibr |  |-  ( a e. On -> a e. { U. a , suc U. a } ) | 
| 8 | 1 | onsetreclem1 |  |-  ( F ` a ) = { U. a , suc U. a } | 
| 9 | 7 8 | eleqtrrdi | |- ( a e. On -> a e. ( F ` a ) ) |