Metamath Proof Explorer


Theorem onsetreclem2

Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)

Ref Expression
Hypothesis onsetreclem2.1
|- F = ( x e. _V |-> { U. x , suc U. x } )
Assertion onsetreclem2
|- ( a C_ On -> ( F ` a ) C_ On )

Proof

Step Hyp Ref Expression
1 onsetreclem2.1
 |-  F = ( x e. _V |-> { U. x , suc U. x } )
2 1 onsetreclem1
 |-  ( F ` a ) = { U. a , suc U. a }
3 vex
 |-  a e. _V
4 3 ssonunii
 |-  ( a C_ On -> U. a e. On )
5 suceloni
 |-  ( U. a e. On -> suc U. a e. On )
6 prssi
 |-  ( ( U. a e. On /\ suc U. a e. On ) -> { U. a , suc U. a } C_ On )
7 4 5 6 syl2anc2
 |-  ( a C_ On -> { U. a , suc U. a } C_ On )
8 2 7 eqsstrid
 |-  ( a C_ On -> ( F ` a ) C_ On )