Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onsetreclem2.1 | |- F = ( x e. _V |-> { U. x , suc U. x } ) |
|
Assertion | onsetreclem2 | |- ( a C_ On -> ( F ` a ) C_ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsetreclem2.1 | |- F = ( x e. _V |-> { U. x , suc U. x } ) |
|
2 | 1 | onsetreclem1 | |- ( F ` a ) = { U. a , suc U. a } |
3 | vex | |- a e. _V |
|
4 | 3 | ssonunii | |- ( a C_ On -> U. a e. On ) |
5 | suceloni | |- ( U. a e. On -> suc U. a e. On ) |
|
6 | prssi | |- ( ( U. a e. On /\ suc U. a e. On ) -> { U. a , suc U. a } C_ On ) |
|
7 | 4 5 6 | syl2anc2 | |- ( a C_ On -> { U. a , suc U. a } C_ On ) |
8 | 2 7 | eqsstrid | |- ( a C_ On -> ( F ` a ) C_ On ) |