Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onsetreclem2.1 | |- F = ( x e. _V |-> { U. x , suc U. x } ) | |
| Assertion | onsetreclem2 | |- ( a C_ On -> ( F ` a ) C_ On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsetreclem2.1 |  |-  F = ( x e. _V |-> { U. x , suc U. x } ) | |
| 2 | 1 | onsetreclem1 |  |-  ( F ` a ) = { U. a , suc U. a } | 
| 3 | vex | |- a e. _V | |
| 4 | 3 | ssonunii | |- ( a C_ On -> U. a e. On ) | 
| 5 | onsuc | |- ( U. a e. On -> suc U. a e. On ) | |
| 6 | prssi |  |-  ( ( U. a e. On /\ suc U. a e. On ) -> { U. a , suc U. a } C_ On ) | |
| 7 | 4 5 6 | syl2anc2 |  |-  ( a C_ On -> { U. a , suc U. a } C_ On ) | 
| 8 | 2 7 | eqsstrid | |- ( a C_ On -> ( F ` a ) C_ On ) |