| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniexg |
⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V ) |
| 2 |
|
ssorduni |
⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) |
| 3 |
|
elong |
⊢ ( ∪ 𝐴 ∈ V → ( ∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴 ) ) |
| 4 |
3
|
biimpar |
⊢ ( ( ∪ 𝐴 ∈ V ∧ Ord ∪ 𝐴 ) → ∪ 𝐴 ∈ On ) |
| 5 |
1 2 4
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → ∪ 𝐴 ∈ On ) |
| 6 |
|
onsuc |
⊢ ( ∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ On ) |
| 7 |
|
onenon |
⊢ ( suc ∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ dom card ) |
| 8 |
5 6 7
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → suc ∪ 𝐴 ∈ dom card ) |
| 9 |
|
onsucuni |
⊢ ( 𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → 𝐴 ⊆ suc ∪ 𝐴 ) |
| 11 |
|
ssnum |
⊢ ( ( suc ∪ 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc ∪ 𝐴 ) → 𝐴 ∈ dom card ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → 𝐴 ∈ dom card ) |