Metamath Proof Explorer


Theorem onsupcl2

Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupcl2 ( 𝐴 ∈ 𝒫 On → 𝐴 ∈ On )

Proof

Step Hyp Ref Expression
1 elpwb ( 𝐴 ∈ 𝒫 On ↔ ( 𝐴 ∈ V ∧ 𝐴 ⊆ On ) )
2 ssonuni ( 𝐴 ∈ V → ( 𝐴 ⊆ On → 𝐴 ∈ On ) )
3 2 imp ( ( 𝐴 ∈ V ∧ 𝐴 ⊆ On ) → 𝐴 ∈ On )
4 1 3 sylbi ( 𝐴 ∈ 𝒫 On → 𝐴 ∈ On )