Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupcl2 | |- ( A e. ~P On -> U. A e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwb | |- ( A e. ~P On <-> ( A e. _V /\ A C_ On ) ) |
|
2 | ssonuni | |- ( A e. _V -> ( A C_ On -> U. A e. On ) ) |
|
3 | 2 | imp | |- ( ( A e. _V /\ A C_ On ) -> U. A e. On ) |
4 | 1 3 | sylbi | |- ( A e. ~P On -> U. A e. On ) |