Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupcl2 | |- ( A e. ~P On -> U. A e. On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpwb | |- ( A e. ~P On <-> ( A e. _V /\ A C_ On ) ) | |
| 2 | ssonuni | |- ( A e. _V -> ( A C_ On -> U. A e. On ) ) | |
| 3 | 2 | imp | |- ( ( A e. _V /\ A C_ On ) -> U. A e. On ) | 
| 4 | 1 3 | sylbi | |- ( A e. ~P On -> U. A e. On ) |