Metamath Proof Explorer


Theorem ovsn

Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypothesis ovsn.1 𝐶 ∈ V
Assertion ovsn ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 ) = 𝐶

Proof

Step Hyp Ref Expression
1 ovsn.1 𝐶 ∈ V
2 ovsng ( 𝐶 ∈ V → ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 ) = 𝐶 )
3 1 2 ax-mp ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 ) = 𝐶