Metamath Proof Explorer


Theorem ovsng

Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Assertion ovsng ( 𝐶𝑉 → ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 df-ov ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 ) = ( { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } ‘ ⟨ 𝐴 , 𝐵 ⟩ )
2 opex 𝐴 , 𝐵 ⟩ ∈ V
3 fvsng ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ 𝐶𝑉 ) → ( { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐶 )
4 2 3 mpan ( 𝐶𝑉 → ( { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐶 )
5 1 4 eqtrid ( 𝐶𝑉 → ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 ) = 𝐶 )