Metamath Proof Explorer


Theorem ovsng

Description: The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Assertion ovsng
|- ( C e. V -> ( A { <. <. A , B >. , C >. } B ) = C )

Proof

Step Hyp Ref Expression
1 df-ov
 |-  ( A { <. <. A , B >. , C >. } B ) = ( { <. <. A , B >. , C >. } ` <. A , B >. )
2 opex
 |-  <. A , B >. e. _V
3 fvsng
 |-  ( ( <. A , B >. e. _V /\ C e. V ) -> ( { <. <. A , B >. , C >. } ` <. A , B >. ) = C )
4 2 3 mpan
 |-  ( C e. V -> ( { <. <. A , B >. , C >. } ` <. A , B >. ) = C )
5 1 4 eqtrid
 |-  ( C e. V -> ( A { <. <. A , B >. , C >. } B ) = C )