Metamath Proof Explorer


Theorem ovsng2

Description: The operation value of a singleton of an ordered triple is the last member. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Assertion ovsng2 ( 𝐶𝑉 → ( 𝐴 { ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ } 𝐵 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 df-ot 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶
2 1 sneqi { ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ } = { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ }
3 2 oveqi ( 𝐴 { ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ } 𝐵 ) = ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 )
4 ovsng ( 𝐶𝑉 → ( 𝐴 { ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ } 𝐵 ) = 𝐶 )
5 3 4 eqtrid ( 𝐶𝑉 → ( 𝐴 { ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ } 𝐵 ) = 𝐶 )