Description: The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | perflp | ⊢ ( 𝐽 ∈ Perf → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isperf | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝐽 ∈ Perf → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |