Metamath Proof Explorer


Theorem pjmuli

Description: Projection of scalar product is scalar product of projection. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjadjt.1 𝐻C
Assertion pjmuli ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( proj𝐻 ) ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ( proj𝐻 ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 pjadjt.1 𝐻C
2 fvoveq1 ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( proj𝐻 ) ‘ ( 𝐴 · 𝐵 ) ) = ( ( proj𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) )
3 oveq1 ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 · ( ( proj𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · ( ( proj𝐻 ) ‘ 𝐵 ) ) )
4 2 3 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( proj𝐻 ) ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ( proj𝐻 ) ‘ 𝐵 ) ) ↔ ( ( proj𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · ( ( proj𝐻 ) ‘ 𝐵 ) ) ) )
5 oveq2 ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
6 5 fveq2d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( proj𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( ( proj𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) )
7 fveq2 ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( proj𝐻 ) ‘ 𝐵 ) = ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
8 7 oveq2d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · ( ( proj𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) )
9 6 8 eqeq12d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( ( proj𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · ( ( proj𝐻 ) ‘ 𝐵 ) ) ↔ ( ( proj𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) ) )
10 ifhvhv0 if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ∈ ℋ
11 0cn 0 ∈ ℂ
12 11 elimel if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ
13 1 10 12 pjmulii ( ( proj𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) · ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
14 4 9 13 dedth2h ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( proj𝐻 ) ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ( proj𝐻 ) ‘ 𝐵 ) ) )