| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjadjt.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
fvoveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 4 |
2 3
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 9 |
6 8
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 10 |
|
ifhvhv0 |
⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ |
| 11 |
|
0cn |
⊢ 0 ∈ ℂ |
| 12 |
11
|
elimel |
⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
| 13 |
1 10 12
|
pjmulii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 14 |
4 9 13
|
dedth2h |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |