Metamath Proof Explorer


Theorem pjopythi

Description: Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoi0.1 𝐺C
pjoi0.2 𝐻C
pjoi0.3 𝐴 ∈ ℋ
Assertion pjopythi ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( norm ‘ ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 pjoi0.1 𝐺C
2 pjoi0.2 𝐻C
3 pjoi0.3 𝐴 ∈ ℋ
4 1 2 3 pjoi0i ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( proj𝐺 ) ‘ 𝐴 ) ·ih ( ( proj𝐻 ) ‘ 𝐴 ) ) = 0 )
5 1 3 pjhclii ( ( proj𝐺 ) ‘ 𝐴 ) ∈ ℋ
6 2 3 pjhclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ
7 5 6 normpythi ( ( ( ( proj𝐺 ) ‘ 𝐴 ) ·ih ( ( proj𝐻 ) ‘ 𝐴 ) ) = 0 → ( ( norm ‘ ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) )
8 4 7 syl ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( norm ‘ ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) )