Metamath Proof Explorer


Theorem pm13.14

Description: Theorem *13.14 in WhiteheadRussell p. 178. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion pm13.14 ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ ¬ 𝜑 ) → 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 sbceq1a ( 𝑥 = 𝐴 → ( 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
2 1 biimprcd ( [ 𝐴 / 𝑥 ] 𝜑 → ( 𝑥 = 𝐴𝜑 ) )
3 2 necon3bd ( [ 𝐴 / 𝑥 ] 𝜑 → ( ¬ 𝜑𝑥𝐴 ) )
4 3 imp ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ ¬ 𝜑 ) → 𝑥𝐴 )