Description: Theorem *13.14 in WhiteheadRussell p. 178. (Contributed by Andrew Salmon, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.14 | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ ¬ 𝜑 ) → 𝑥 ≠ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
2 | 1 | biimprcd | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
3 | 2 | necon3bd | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ( ¬ 𝜑 → 𝑥 ≠ 𝐴 ) ) |
4 | 3 | imp | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ ¬ 𝜑 ) → 𝑥 ≠ 𝐴 ) |