Step |
Hyp |
Ref |
Expression |
1 |
|
biimpr |
⊢ ( ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝑥 = 𝐴 ) ) |
2 |
1
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝐴 ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
4 |
3
|
equsalvw |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝐴 ) ↔ 𝑦 = 𝐴 ) |
5 |
2 4
|
sylib |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) → 𝑦 = 𝐴 ) |
6 |
|
eqeq2 |
⊢ ( 𝐴 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ) |
7 |
6
|
eqcoms |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ) |
8 |
7
|
alrimiv |
⊢ ( 𝑦 = 𝐴 → ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ) |
9 |
5 8
|
impbii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ↔ 𝑦 = 𝐴 ) |
10 |
9
|
anbi1i |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
12 |
|
sbc5 |
⊢ ( [ 𝐴 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
13 |
11 12
|
bitr4i |
⊢ ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴 ↔ 𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑦 ] 𝜑 ) |