Metamath Proof Explorer


Theorem pm13.192

Description: Theorem *13.192 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011) (Revised by NM, 4-Jan-2017)

Ref Expression
Assertion pm13.192 ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 biimpr ( ( 𝑥 = 𝐴𝑥 = 𝑦 ) → ( 𝑥 = 𝑦𝑥 = 𝐴 ) )
2 1 alimi ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝐴 ) )
3 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
4 3 equsalvw ( ∀ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝐴 ) ↔ 𝑦 = 𝐴 )
5 2 4 sylib ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) → 𝑦 = 𝐴 )
6 eqeq2 ( 𝐴 = 𝑦 → ( 𝑥 = 𝐴𝑥 = 𝑦 ) )
7 6 eqcoms ( 𝑦 = 𝐴 → ( 𝑥 = 𝐴𝑥 = 𝑦 ) )
8 7 alrimiv ( 𝑦 = 𝐴 → ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) )
9 5 8 impbii ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) ↔ 𝑦 = 𝐴 )
10 9 anbi1i ( ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ( 𝑦 = 𝐴𝜑 ) )
11 10 exbii ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝜑 ) )
12 sbc5 ( [ 𝐴 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝜑 ) )
13 11 12 bitr4i ( ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑦 ] 𝜑 )