Step |
Hyp |
Ref |
Expression |
1 |
|
biimpr |
|- ( ( x = A <-> x = y ) -> ( x = y -> x = A ) ) |
2 |
1
|
alimi |
|- ( A. x ( x = A <-> x = y ) -> A. x ( x = y -> x = A ) ) |
3 |
|
eqeq1 |
|- ( x = y -> ( x = A <-> y = A ) ) |
4 |
3
|
equsalvw |
|- ( A. x ( x = y -> x = A ) <-> y = A ) |
5 |
2 4
|
sylib |
|- ( A. x ( x = A <-> x = y ) -> y = A ) |
6 |
|
eqeq2 |
|- ( A = y -> ( x = A <-> x = y ) ) |
7 |
6
|
eqcoms |
|- ( y = A -> ( x = A <-> x = y ) ) |
8 |
7
|
alrimiv |
|- ( y = A -> A. x ( x = A <-> x = y ) ) |
9 |
5 8
|
impbii |
|- ( A. x ( x = A <-> x = y ) <-> y = A ) |
10 |
9
|
anbi1i |
|- ( ( A. x ( x = A <-> x = y ) /\ ph ) <-> ( y = A /\ ph ) ) |
11 |
10
|
exbii |
|- ( E. y ( A. x ( x = A <-> x = y ) /\ ph ) <-> E. y ( y = A /\ ph ) ) |
12 |
|
sbc5 |
|- ( [. A / y ]. ph <-> E. y ( y = A /\ ph ) ) |
13 |
11 12
|
bitr4i |
|- ( E. y ( A. x ( x = A <-> x = y ) /\ ph ) <-> [. A / y ]. ph ) |