Step |
Hyp |
Ref |
Expression |
1 |
|
eumo |
⊢ ( ∃! 𝑥 𝜑 → ∃* 𝑥 𝜑 ) |
2 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
3 |
2
|
mo3 |
⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
4 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 |
5
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
7 |
6
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
8 |
3 7
|
bitri |
⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
9 |
1 8
|
sylib |
⊢ ( ∃! 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |