Metamath Proof Explorer


Theorem pm14.122c

Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.122c ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 pm14.122a ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) )
2 pm14.122b ( 𝐴𝑉 → ( ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) )
3 1 2 bitrd ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) )