Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm14.122c | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm14.122a | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) | |
2 | pm14.122b | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) ) | |
3 | 1 2 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) ) |