Metamath Proof Explorer


Theorem pm14.122c

Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.122c
|- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) )

Proof

Step Hyp Ref Expression
1 pm14.122a
 |-  ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) ) )
2 pm14.122b
 |-  ( A e. V -> ( ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) )
3 1 2 bitrd
 |-  ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) )