Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm14.122c | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm14.122a | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) ) ) |
|
2 | pm14.122b | |- ( A e. V -> ( ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |
|
3 | 1 2 | bitrd | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |