Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
2 |
1
|
imbi2d |
|- ( y = A -> ( ( ph -> x = y ) <-> ( ph -> x = A ) ) ) |
3 |
2
|
albidv |
|- ( y = A -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = A ) ) ) |
4 |
|
dfsbcq |
|- ( y = A -> ( [. y / x ]. ph <-> [. A / x ]. ph ) ) |
5 |
4
|
bibi1d |
|- ( y = A -> ( ( [. y / x ]. ph <-> E. x ph ) <-> ( [. A / x ]. ph <-> E. x ph ) ) ) |
6 |
3 5
|
imbi12d |
|- ( y = A -> ( ( A. x ( ph -> x = y ) -> ( [. y / x ]. ph <-> E. x ph ) ) <-> ( A. x ( ph -> x = A ) -> ( [. A / x ]. ph <-> E. x ph ) ) ) ) |
7 |
|
sbc5 |
|- ( [. y / x ]. ph <-> E. x ( x = y /\ ph ) ) |
8 |
|
nfa1 |
|- F/ x A. x ( ph -> x = y ) |
9 |
|
simpr |
|- ( ( x = y /\ ph ) -> ph ) |
10 |
|
ancr |
|- ( ( ph -> x = y ) -> ( ph -> ( x = y /\ ph ) ) ) |
11 |
10
|
sps |
|- ( A. x ( ph -> x = y ) -> ( ph -> ( x = y /\ ph ) ) ) |
12 |
9 11
|
impbid2 |
|- ( A. x ( ph -> x = y ) -> ( ( x = y /\ ph ) <-> ph ) ) |
13 |
8 12
|
exbid |
|- ( A. x ( ph -> x = y ) -> ( E. x ( x = y /\ ph ) <-> E. x ph ) ) |
14 |
7 13
|
syl5bb |
|- ( A. x ( ph -> x = y ) -> ( [. y / x ]. ph <-> E. x ph ) ) |
15 |
6 14
|
vtoclg |
|- ( A e. V -> ( A. x ( ph -> x = A ) -> ( [. A / x ]. ph <-> E. x ph ) ) ) |
16 |
15
|
pm5.32d |
|- ( A e. V -> ( ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |