Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm14.123c | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm14.123a | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) | |
2 | pm14.123b | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) ) | |
3 | 1 2 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) ) |