Step |
Hyp |
Ref |
Expression |
1 |
|
2sbc5g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
3 |
|
nfa1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) |
4 |
|
nfa2 |
⊢ Ⅎ 𝑤 ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) → 𝜑 ) |
6 |
|
2sp |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) |
7 |
6
|
ancrd |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( 𝜑 → ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
8 |
5 7
|
impbid2 |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜑 ) ) |
9 |
4 8
|
exbid |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑤 𝜑 ) ) |
10 |
3 9
|
exbid |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) |
12 |
2 11
|
bitr3d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) → ( [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) |
13 |
12
|
pm5.32da |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∃ 𝑧 ∃ 𝑤 𝜑 ) ) ) |