Metamath Proof Explorer


Theorem pm14.123b

Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.123b ( ( 𝐴𝑉𝐵𝑊 ) → ( ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) ∧ ∃ 𝑧𝑤 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 2sbc5g ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑧𝑤 ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) )
2 1 adantr ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) ) → ( ∃ 𝑧𝑤 ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) )
3 nfa1 𝑧𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) )
4 nfa2 𝑤𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) )
5 simpr ( ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) → 𝜑 )
6 2sp ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) → ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) )
7 6 ancrd ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) → ( 𝜑 → ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) ) )
8 5 7 impbid2 ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) → ( ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜑 ) )
9 4 8 exbid ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) → ( ∃ 𝑤 ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑤 𝜑 ) )
10 3 9 exbid ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) → ( ∃ 𝑧𝑤 ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧𝑤 𝜑 ) )
11 10 adantl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) ) → ( ∃ 𝑧𝑤 ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧𝑤 𝜑 ) )
12 2 11 bitr3d ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) ) → ( [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ↔ ∃ 𝑧𝑤 𝜑 ) )
13 12 pm5.32da ( ( 𝐴𝑉𝐵𝑊 ) → ( ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧𝑤 ( 𝜑 → ( 𝑧 = 𝐴𝑤 = 𝐵 ) ) ∧ ∃ 𝑧𝑤 𝜑 ) ) )