| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑤  =  𝑦  ↔  𝑤  =  𝐵 ) ) | 
						
							| 2 | 1 | anbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ↔  ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 ) ) ) | 
						
							| 3 | 2 | anbi1d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 )  ∧  𝜑 ) ) ) | 
						
							| 4 | 3 | 2exbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 )  ∧  𝜑 ) ) ) | 
						
							| 5 |  | dfsbcq | ⊢ ( 𝑦  =  𝐵  →  ( [ 𝑦  /  𝑤 ] 𝜑  ↔  [ 𝐵  /  𝑤 ] 𝜑 ) ) | 
						
							| 6 | 5 | sbcbidv | ⊢ ( 𝑦  =  𝐵  →  ( [ 𝑥  /  𝑧 ] [ 𝑦  /  𝑤 ] 𝜑  ↔  [ 𝑥  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑 ) ) | 
						
							| 7 | 4 6 | bibi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  [ 𝑥  /  𝑧 ] [ 𝑦  /  𝑤 ] 𝜑 )  ↔  ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 )  ∧  𝜑 )  ↔  [ 𝑥  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑 ) ) ) | 
						
							| 8 |  | eqeq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑧  =  𝑥  ↔  𝑧  =  𝐴 ) ) | 
						
							| 9 | 8 | anbi1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 )  ↔  ( 𝑧  =  𝐴  ∧  𝑤  =  𝐵 ) ) ) | 
						
							| 10 | 9 | anbi1d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 )  ∧  𝜑 )  ↔  ( ( 𝑧  =  𝐴  ∧  𝑤  =  𝐵 )  ∧  𝜑 ) ) ) | 
						
							| 11 | 10 | 2exbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 )  ∧  𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝐴  ∧  𝑤  =  𝐵 )  ∧  𝜑 ) ) ) | 
						
							| 12 |  | dfsbcq | ⊢ ( 𝑥  =  𝐴  →  ( [ 𝑥  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑  ↔  [ 𝐴  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑 ) ) | 
						
							| 13 | 11 12 | bibi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝐵 )  ∧  𝜑 )  ↔  [ 𝑥  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑 )  ↔  ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝐴  ∧  𝑤  =  𝐵 )  ∧  𝜑 )  ↔  [ 𝐴  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑 ) ) ) | 
						
							| 14 |  | sbc5 | ⊢ ( [ 𝑥  /  𝑧 ] [ 𝑦  /  𝑤 ] 𝜑  ↔  ∃ 𝑧 ( 𝑧  =  𝑥  ∧  [ 𝑦  /  𝑤 ] 𝜑 ) ) | 
						
							| 15 |  | 19.42v | ⊢ ( ∃ 𝑤 ( 𝑧  =  𝑥  ∧  ( 𝑤  =  𝑦  ∧  𝜑 ) )  ↔  ( 𝑧  =  𝑥  ∧  ∃ 𝑤 ( 𝑤  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 16 |  | anass | ⊢ ( ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  ( 𝑧  =  𝑥  ∧  ( 𝑤  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 17 | 16 | exbii | ⊢ ( ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  ∃ 𝑤 ( 𝑧  =  𝑥  ∧  ( 𝑤  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 18 |  | sbc5 | ⊢ ( [ 𝑦  /  𝑤 ] 𝜑  ↔  ∃ 𝑤 ( 𝑤  =  𝑦  ∧  𝜑 ) ) | 
						
							| 19 | 18 | anbi2i | ⊢ ( ( 𝑧  =  𝑥  ∧  [ 𝑦  /  𝑤 ] 𝜑 )  ↔  ( 𝑧  =  𝑥  ∧  ∃ 𝑤 ( 𝑤  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 20 | 15 17 19 | 3bitr4ri | ⊢ ( ( 𝑧  =  𝑥  ∧  [ 𝑦  /  𝑤 ] 𝜑 )  ↔  ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 21 | 20 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧  =  𝑥  ∧  [ 𝑦  /  𝑤 ] 𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 ) ) | 
						
							| 22 | 14 21 | bitr2i | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  ∧  𝜑 )  ↔  [ 𝑥  /  𝑧 ] [ 𝑦  /  𝑤 ] 𝜑 ) | 
						
							| 23 | 7 13 22 | vtocl2g | ⊢ ( ( 𝐵  ∈  𝐷  ∧  𝐴  ∈  𝐶 )  →  ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝐴  ∧  𝑤  =  𝐵 )  ∧  𝜑 )  ↔  [ 𝐴  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑 ) ) | 
						
							| 24 | 23 | ancoms | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  =  𝐴  ∧  𝑤  =  𝐵 )  ∧  𝜑 )  ↔  [ 𝐴  /  𝑧 ] [ 𝐵  /  𝑤 ] 𝜑 ) ) |