| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 |  |-  ( y = B -> ( w = y <-> w = B ) ) | 
						
							| 2 | 1 | anbi2d |  |-  ( y = B -> ( ( z = x /\ w = y ) <-> ( z = x /\ w = B ) ) ) | 
						
							| 3 | 2 | anbi1d |  |-  ( y = B -> ( ( ( z = x /\ w = y ) /\ ph ) <-> ( ( z = x /\ w = B ) /\ ph ) ) ) | 
						
							| 4 | 3 | 2exbidv |  |-  ( y = B -> ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> E. z E. w ( ( z = x /\ w = B ) /\ ph ) ) ) | 
						
							| 5 |  | dfsbcq |  |-  ( y = B -> ( [. y / w ]. ph <-> [. B / w ]. ph ) ) | 
						
							| 6 | 5 | sbcbidv |  |-  ( y = B -> ( [. x / z ]. [. y / w ]. ph <-> [. x / z ]. [. B / w ]. ph ) ) | 
						
							| 7 | 4 6 | bibi12d |  |-  ( y = B -> ( ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> [. x / z ]. [. y / w ]. ph ) <-> ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> [. x / z ]. [. B / w ]. ph ) ) ) | 
						
							| 8 |  | eqeq2 |  |-  ( x = A -> ( z = x <-> z = A ) ) | 
						
							| 9 | 8 | anbi1d |  |-  ( x = A -> ( ( z = x /\ w = B ) <-> ( z = A /\ w = B ) ) ) | 
						
							| 10 | 9 | anbi1d |  |-  ( x = A -> ( ( ( z = x /\ w = B ) /\ ph ) <-> ( ( z = A /\ w = B ) /\ ph ) ) ) | 
						
							| 11 | 10 | 2exbidv |  |-  ( x = A -> ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> E. z E. w ( ( z = A /\ w = B ) /\ ph ) ) ) | 
						
							| 12 |  | dfsbcq |  |-  ( x = A -> ( [. x / z ]. [. B / w ]. ph <-> [. A / z ]. [. B / w ]. ph ) ) | 
						
							| 13 | 11 12 | bibi12d |  |-  ( x = A -> ( ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> [. x / z ]. [. B / w ]. ph ) <-> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) ) | 
						
							| 14 |  | sbc5 |  |-  ( [. x / z ]. [. y / w ]. ph <-> E. z ( z = x /\ [. y / w ]. ph ) ) | 
						
							| 15 |  | 19.42v |  |-  ( E. w ( z = x /\ ( w = y /\ ph ) ) <-> ( z = x /\ E. w ( w = y /\ ph ) ) ) | 
						
							| 16 |  | anass |  |-  ( ( ( z = x /\ w = y ) /\ ph ) <-> ( z = x /\ ( w = y /\ ph ) ) ) | 
						
							| 17 | 16 | exbii |  |-  ( E. w ( ( z = x /\ w = y ) /\ ph ) <-> E. w ( z = x /\ ( w = y /\ ph ) ) ) | 
						
							| 18 |  | sbc5 |  |-  ( [. y / w ]. ph <-> E. w ( w = y /\ ph ) ) | 
						
							| 19 | 18 | anbi2i |  |-  ( ( z = x /\ [. y / w ]. ph ) <-> ( z = x /\ E. w ( w = y /\ ph ) ) ) | 
						
							| 20 | 15 17 19 | 3bitr4ri |  |-  ( ( z = x /\ [. y / w ]. ph ) <-> E. w ( ( z = x /\ w = y ) /\ ph ) ) | 
						
							| 21 | 20 | exbii |  |-  ( E. z ( z = x /\ [. y / w ]. ph ) <-> E. z E. w ( ( z = x /\ w = y ) /\ ph ) ) | 
						
							| 22 | 14 21 | bitr2i |  |-  ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> [. x / z ]. [. y / w ]. ph ) | 
						
							| 23 | 7 13 22 | vtocl2g |  |-  ( ( B e. D /\ A e. C ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) | 
						
							| 24 | 23 | ancoms |  |-  ( ( A e. C /\ B e. D ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |