| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eu6 |  |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) | 
						
							| 2 |  | vex |  |-  y e. _V | 
						
							| 3 | 2 | intsn |  |-  |^| { y } = y | 
						
							| 4 |  | abbi |  |-  ( A. x ( ph <-> x = y ) -> { x | ph } = { x | x = y } ) | 
						
							| 5 |  | df-sn |  |-  { y } = { x | x = y } | 
						
							| 6 | 4 5 | eqtr4di |  |-  ( A. x ( ph <-> x = y ) -> { x | ph } = { y } ) | 
						
							| 7 | 6 | inteqd |  |-  ( A. x ( ph <-> x = y ) -> |^| { x | ph } = |^| { y } ) | 
						
							| 8 |  | iotaval |  |-  ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) | 
						
							| 9 | 3 7 8 | 3eqtr4a |  |-  ( A. x ( ph <-> x = y ) -> |^| { x | ph } = ( iota x ph ) ) | 
						
							| 10 | 9 | exlimiv |  |-  ( E. y A. x ( ph <-> x = y ) -> |^| { x | ph } = ( iota x ph ) ) | 
						
							| 11 | 1 10 | sylbi |  |-  ( E! x ph -> |^| { x | ph } = ( iota x ph ) ) |