Description: The iota class exists. This theorem does not require ax-nul for its proof. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaexeu | |- ( E! x ph -> ( iota x ph ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval | |- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
|
| 2 | 1 | eqcomd | |- ( A. x ( ph <-> x = y ) -> y = ( iota x ph ) ) |
| 3 | 2 | eximi | |- ( E. y A. x ( ph <-> x = y ) -> E. y y = ( iota x ph ) ) |
| 4 | eu6 | |- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |
|
| 5 | isset | |- ( ( iota x ph ) e. _V <-> E. y y = ( iota x ph ) ) |
|
| 6 | 3 4 5 | 3imtr4i | |- ( E! x ph -> ( iota x ph ) e. _V ) |