| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eu6 | ⊢ ( ∃! 𝑥 𝜑  ↔  ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 ) ) | 
						
							| 2 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 3 | 2 | intsn | ⊢ ∩  { 𝑦 }  =  𝑦 | 
						
							| 4 |  | abbi | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  𝑥  =  𝑦 } ) | 
						
							| 5 |  | df-sn | ⊢ { 𝑦 }  =  { 𝑥  ∣  𝑥  =  𝑦 } | 
						
							| 6 | 4 5 | eqtr4di | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  { 𝑥  ∣  𝜑 }  =  { 𝑦 } ) | 
						
							| 7 | 6 | inteqd | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ∩  { 𝑥  ∣  𝜑 }  =  ∩  { 𝑦 } ) | 
						
							| 8 |  | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ( ℩ 𝑥 𝜑 )  =  𝑦 ) | 
						
							| 9 | 3 7 8 | 3eqtr4a | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ∩  { 𝑥  ∣  𝜑 }  =  ( ℩ 𝑥 𝜑 ) ) | 
						
							| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  ∩  { 𝑥  ∣  𝜑 }  =  ( ℩ 𝑥 𝜑 ) ) | 
						
							| 11 | 1 10 | sylbi | ⊢ ( ∃! 𝑥 𝜑  →  ∩  { 𝑥  ∣  𝜑 }  =  ( ℩ 𝑥 𝜑 ) ) |