Step |
Hyp |
Ref |
Expression |
1 |
|
2sbc5g |
|- ( ( A e. V /\ B e. W ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
2 |
1
|
adantr |
|- ( ( ( A e. V /\ B e. W ) /\ A. z A. w ( ph -> ( z = A /\ w = B ) ) ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
3 |
|
nfa1 |
|- F/ z A. z A. w ( ph -> ( z = A /\ w = B ) ) |
4 |
|
nfa2 |
|- F/ w A. z A. w ( ph -> ( z = A /\ w = B ) ) |
5 |
|
simpr |
|- ( ( ( z = A /\ w = B ) /\ ph ) -> ph ) |
6 |
|
2sp |
|- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( ph -> ( z = A /\ w = B ) ) ) |
7 |
6
|
ancrd |
|- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( ph -> ( ( z = A /\ w = B ) /\ ph ) ) ) |
8 |
5 7
|
impbid2 |
|- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( ( ( z = A /\ w = B ) /\ ph ) <-> ph ) ) |
9 |
4 8
|
exbid |
|- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( E. w ( ( z = A /\ w = B ) /\ ph ) <-> E. w ph ) ) |
10 |
3 9
|
exbid |
|- ( A. z A. w ( ph -> ( z = A /\ w = B ) ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> E. z E. w ph ) ) |
11 |
10
|
adantl |
|- ( ( ( A e. V /\ B e. W ) /\ A. z A. w ( ph -> ( z = A /\ w = B ) ) ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> E. z E. w ph ) ) |
12 |
2 11
|
bitr3d |
|- ( ( ( A e. V /\ B e. W ) /\ A. z A. w ( ph -> ( z = A /\ w = B ) ) ) -> ( [. A / z ]. [. B / w ]. ph <-> E. z E. w ph ) ) |
13 |
12
|
pm5.32da |
|- ( ( A e. V /\ B e. W ) -> ( ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ E. z E. w ph ) ) ) |