Metamath Proof Explorer


Theorem pm2.4

Description: Theorem *2.4 of WhiteheadRussell p. 106. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.4 ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 orc ( 𝜑 → ( 𝜑𝜓 ) )
2 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
3 1 2 jaoi ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )