Metamath Proof Explorer
		
		
		
		Description:  Deduction eliminating an elementhood in an antecedent.  (Contributed by AV, 5-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | pm2.61danel.1 | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  𝜓 ) | 
					
						|  |  | pm2.61danel.2 | ⊢ ( ( 𝜑  ∧  𝐴  ∉  𝐵 )  →  𝜓 ) | 
				
					|  | Assertion | pm2.61danel | ⊢  ( 𝜑  →  𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2.61danel.1 | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  𝜓 ) | 
						
							| 2 |  | pm2.61danel.2 | ⊢ ( ( 𝜑  ∧  𝐴  ∉  𝐵 )  →  𝜓 ) | 
						
							| 3 |  | df-nel | ⊢ ( 𝐴  ∉  𝐵  ↔  ¬  𝐴  ∈  𝐵 ) | 
						
							| 4 | 3 2 | sylan2br | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  𝐵 )  →  𝜓 ) | 
						
							| 5 | 1 4 | pm2.61dan | ⊢ ( 𝜑  →  𝜓 ) |