Description: Theorem *2.62 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 13-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.62 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.621 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
2 | 1 | com12 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |