Description: Theorem *2.82 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.82 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → ( ( ( 𝜑 ∨ ¬ 𝜒 ) ∨ 𝜃 ) → ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24 | ⊢ ( 𝜒 → ( ¬ 𝜒 → 𝜓 ) ) | |
2 | 1 | orim2d | ⊢ ( 𝜒 → ( ( 𝜑 ∨ ¬ 𝜒 ) → ( 𝜑 ∨ 𝜓 ) ) ) |
3 | 2 | jao1i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → ( ( 𝜑 ∨ ¬ 𝜒 ) → ( 𝜑 ∨ 𝜓 ) ) ) |
4 | 3 | orim1d | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → ( ( ( 𝜑 ∨ ¬ 𝜒 ) ∨ 𝜃 ) → ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜃 ) ) ) |