Description: Theorem *3.1 of WhiteheadRussell p. 111. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm3.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) | |
2 | 1 | biimpi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |