Metamath Proof Explorer


Theorem pm3.1

Description: Theorem *3.1 of WhiteheadRussell p. 111. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm3.1 ( ( 𝜑𝜓 ) → ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 anor ( ( 𝜑𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )
2 1 biimpi ( ( 𝜑𝜓 ) → ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )