Description: Theorem *4.83 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.83 | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜓 ) ) ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid | ⊢ ( 𝜑 ∨ ¬ 𝜑 ) | |
| 2 | 1 | a1bi | ⊢ ( 𝜓 ↔ ( ( 𝜑 ∨ ¬ 𝜑 ) → 𝜓 ) ) |
| 3 | jaob | ⊢ ( ( ( 𝜑 ∨ ¬ 𝜑 ) → 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜓 ) ) ) | |
| 4 | 2 3 | bitr2i | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜓 ) ) ↔ 𝜓 ) |