Metamath Proof Explorer


Theorem pm5.71

Description: Theorem *5.71 of WhiteheadRussell p. 125. (Contributed by Roy F. Longton, 23-Jun-2005)

Ref Expression
Assertion pm5.71 ( ( 𝜓 → ¬ 𝜒 ) → ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 orel2 ( ¬ 𝜓 → ( ( 𝜑𝜓 ) → 𝜑 ) )
2 orc ( 𝜑 → ( 𝜑𝜓 ) )
3 1 2 impbid1 ( ¬ 𝜓 → ( ( 𝜑𝜓 ) ↔ 𝜑 ) )
4 3 anbi1d ( ¬ 𝜓 → ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑𝜒 ) ) )
5 pm2.21 ( ¬ 𝜒 → ( 𝜒 → ( ( 𝜑𝜓 ) ↔ 𝜑 ) ) )
6 5 pm5.32rd ( ¬ 𝜒 → ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑𝜒 ) ) )
7 4 6 ja ( ( 𝜓 → ¬ 𝜒 ) → ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑𝜒 ) ) )