| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | pmtrrn.r | ⊢ 𝑅  =  ran  𝑇 | 
						
							| 3 |  | 2on0 | ⊢ 2o  ≠  ∅ | 
						
							| 4 |  | eqid | ⊢ dom  ( 𝐹  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) | 
						
							| 5 | 1 2 4 | pmtrfrn | ⊢ ( 𝐹  ∈  𝑅  →  ( ( 𝐷  ∈  V  ∧  dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  dom  ( 𝐹  ∖   I  )  ≈  2o )  ∧  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝐷  ∈  V  ∧  dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  dom  ( 𝐹  ∖   I  )  ≈  2o ) ) | 
						
							| 7 | 6 | simp3d | ⊢ ( 𝐹  ∈  𝑅  →  dom  ( 𝐹  ∖   I  )  ≈  2o ) | 
						
							| 8 |  | enen1 | ⊢ ( dom  ( 𝐹  ∖   I  )  ≈  2o  →  ( dom  ( 𝐹  ∖   I  )  ≈  ∅  ↔  2o  ≈  ∅ ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐹  ∈  𝑅  →  ( dom  ( 𝐹  ∖   I  )  ≈  ∅  ↔  2o  ≈  ∅ ) ) | 
						
							| 10 |  | en0 | ⊢ ( dom  ( 𝐹  ∖   I  )  ≈  ∅  ↔  dom  ( 𝐹  ∖   I  )  =  ∅ ) | 
						
							| 11 |  | en0 | ⊢ ( 2o  ≈  ∅  ↔  2o  =  ∅ ) | 
						
							| 12 | 9 10 11 | 3bitr3g | ⊢ ( 𝐹  ∈  𝑅  →  ( dom  ( 𝐹  ∖   I  )  =  ∅  ↔  2o  =  ∅ ) ) | 
						
							| 13 | 12 | necon3bid | ⊢ ( 𝐹  ∈  𝑅  →  ( dom  ( 𝐹  ∖   I  )  ≠  ∅  ↔  2o  ≠  ∅ ) ) | 
						
							| 14 | 3 13 | mpbiri | ⊢ ( 𝐹  ∈  𝑅  →  dom  ( 𝐹  ∖   I  )  ≠  ∅ ) |