| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 3 |
|
ppival |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
| 5 |
|
ppisval2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 6 |
1 5
|
sylan |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 7 |
|
flid |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝐴 ∈ ℤ → ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) = ( 𝑀 ... 𝐴 ) ) |
| 9 |
8
|
ineq1d |
⊢ ( 𝐴 ∈ ℤ → ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
| 11 |
6 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) ) |
| 13 |
4 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) ) |