Metamath Proof Explorer


Theorem predep

Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion predep ( 𝑋𝐵 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴𝑋 ) )

Proof

Step Hyp Ref Expression
1 df-pred Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( E “ { 𝑋 } ) )
2 relcnv Rel E
3 relimasn ( Rel E → ( E “ { 𝑋 } ) = { 𝑦𝑋 E 𝑦 } )
4 2 3 ax-mp ( E “ { 𝑋 } ) = { 𝑦𝑋 E 𝑦 }
5 brcnvg ( ( 𝑋𝐵𝑦 ∈ V ) → ( 𝑋 E 𝑦𝑦 E 𝑋 ) )
6 5 elvd ( 𝑋𝐵 → ( 𝑋 E 𝑦𝑦 E 𝑋 ) )
7 epelg ( 𝑋𝐵 → ( 𝑦 E 𝑋𝑦𝑋 ) )
8 6 7 bitrd ( 𝑋𝐵 → ( 𝑋 E 𝑦𝑦𝑋 ) )
9 8 abbi1dv ( 𝑋𝐵 → { 𝑦𝑋 E 𝑦 } = 𝑋 )
10 4 9 syl5eq ( 𝑋𝐵 → ( E “ { 𝑋 } ) = 𝑋 )
11 10 ineq2d ( 𝑋𝐵 → ( 𝐴 ∩ ( E “ { 𝑋 } ) ) = ( 𝐴𝑋 ) )
12 1 11 syl5eq ( 𝑋𝐵 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴𝑋 ) )