Metamath Proof Explorer


Theorem preel

Description: Predecessor is a subset of its successor. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion preel ( 𝑁 ∈ Suc → pre 𝑁𝑁 )

Proof

Step Hyp Ref Expression
1 preex pre 𝑁 ∈ V
2 1 sucid pre 𝑁 ∈ suc pre 𝑁
3 sucpre ( 𝑁 ∈ Suc → suc pre 𝑁 = 𝑁 )
4 2 3 eleqtrid ( 𝑁 ∈ Suc → pre 𝑁𝑁 )