Description: suc is a right-inverse of pre on Suc . This theorem states the partial inverse relation in the direction we most often need. (Contributed by Peter Mazsa, 27-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucpre | ⊢ ( 𝑁 ∈ Suc → suc pre 𝑁 = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | presucmap | ⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁 ) | |
| 2 | preex | ⊢ pre 𝑁 ∈ V | |
| 3 | brsucmap | ⊢ ( ( pre 𝑁 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( pre 𝑁 SucMap 𝑁 ↔ suc pre 𝑁 = 𝑁 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑁 ∈ ran SucMap → ( pre 𝑁 SucMap 𝑁 ↔ suc pre 𝑁 = 𝑁 ) ) |
| 5 | 1 4 | mpbid | ⊢ ( 𝑁 ∈ ran SucMap → suc pre 𝑁 = 𝑁 ) |
| 6 | df-succl | ⊢ Suc = ran SucMap | |
| 7 | 5 6 | eleq2s | ⊢ ( 𝑁 ∈ Suc → suc pre 𝑁 = 𝑁 ) |