Metamath Proof Explorer


Theorem presuc

Description: pre is a left-inverse of suc . This theorem gives a clean rewrite rule that eliminates pre on explicit successors. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion presuc ( 𝑀𝑉 → pre suc 𝑀 = 𝑀 )

Proof

Step Hyp Ref Expression
1 sucmapsuc ( 𝑀𝑉𝑀 SucMap suc 𝑀 )
2 relsucmap Rel SucMap
3 2 relelrni ( 𝑀 SucMap suc 𝑀 → suc 𝑀 ∈ ran SucMap )
4 df-succl Suc = ran SucMap
5 3 4 eleqtrrdi ( 𝑀 SucMap suc 𝑀 → suc 𝑀 ∈ Suc )
6 sucpre ( suc 𝑀 ∈ Suc → suc pre suc 𝑀 = suc 𝑀 )
7 1 5 6 3syl ( 𝑀𝑉 → suc pre suc 𝑀 = suc 𝑀 )
8 suc11reg ( suc pre suc 𝑀 = suc 𝑀 ↔ pre suc 𝑀 = 𝑀 )
9 7 8 sylib ( 𝑀𝑉 → pre suc 𝑀 = 𝑀 )