Description: pre is a left-inverse of suc . This theorem gives a clean rewrite rule that eliminates pre on explicit successors. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | presuc | ⊢ ( 𝑀 ∈ 𝑉 → pre suc 𝑀 = 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucmapsuc | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 SucMap suc 𝑀 ) | |
| 2 | relsucmap | ⊢ Rel SucMap | |
| 3 | 2 | relelrni | ⊢ ( 𝑀 SucMap suc 𝑀 → suc 𝑀 ∈ ran SucMap ) |
| 4 | df-succl | ⊢ Suc = ran SucMap | |
| 5 | 3 4 | eleqtrrdi | ⊢ ( 𝑀 SucMap suc 𝑀 → suc 𝑀 ∈ Suc ) |
| 6 | sucpre | ⊢ ( suc 𝑀 ∈ Suc → suc pre suc 𝑀 = suc 𝑀 ) | |
| 7 | 1 5 6 | 3syl | ⊢ ( 𝑀 ∈ 𝑉 → suc pre suc 𝑀 = suc 𝑀 ) |
| 8 | suc11reg | ⊢ ( suc pre suc 𝑀 = suc 𝑀 ↔ pre suc 𝑀 = 𝑀 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝑀 ∈ 𝑉 → pre suc 𝑀 = 𝑀 ) |