Description: pre is a left-inverse of suc . This theorem gives a clean rewrite rule that eliminates pre on explicit successors. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | presuc | |- ( M e. V -> pre suc M = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucmapsuc | |- ( M e. V -> M SucMap suc M ) |
|
| 2 | relsucmap | |- Rel SucMap |
|
| 3 | 2 | relelrni | |- ( M SucMap suc M -> suc M e. ran SucMap ) |
| 4 | df-succl | |- Suc = ran SucMap |
|
| 5 | 3 4 | eleqtrrdi | |- ( M SucMap suc M -> suc M e. Suc ) |
| 6 | sucpre | |- ( suc M e. Suc -> suc pre suc M = suc M ) |
|
| 7 | 1 5 6 | 3syl | |- ( M e. V -> suc pre suc M = suc M ) |
| 8 | suc11reg | |- ( suc pre suc M = suc M <-> pre suc M = M ) |
|
| 9 | 7 8 | sylib | |- ( M e. V -> pre suc M = M ) |