Metamath Proof Explorer


Theorem presuc

Description: pre is a left-inverse of suc . This theorem gives a clean rewrite rule that eliminates pre on explicit successors. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion presuc
|- ( M e. V -> pre suc M = M )

Proof

Step Hyp Ref Expression
1 sucmapsuc
 |-  ( M e. V -> M SucMap suc M )
2 relsucmap
 |-  Rel SucMap
3 2 relelrni
 |-  ( M SucMap suc M -> suc M e. ran SucMap )
4 df-succl
 |-  Suc = ran SucMap
5 3 4 eleqtrrdi
 |-  ( M SucMap suc M -> suc M e. Suc )
6 sucpre
 |-  ( suc M e. Suc -> suc pre suc M = suc M )
7 1 5 6 3syl
 |-  ( M e. V -> suc pre suc M = suc M )
8 suc11reg
 |-  ( suc pre suc M = suc M <-> pre suc M = M )
9 7 8 sylib
 |-  ( M e. V -> pre suc M = M )