Description: suc is a right-inverse of pre on Suc . This theorem states the partial inverse relation in the direction we most often need. (Contributed by Peter Mazsa, 27-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucpre | |- ( N e. Suc -> suc pre N = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | presucmap | |- ( N e. ran SucMap -> pre N SucMap N ) |
|
| 2 | preex | |- pre N e. _V |
|
| 3 | brsucmap | |- ( ( pre N e. _V /\ N e. ran SucMap ) -> ( pre N SucMap N <-> suc pre N = N ) ) |
|
| 4 | 2 3 | mpan | |- ( N e. ran SucMap -> ( pre N SucMap N <-> suc pre N = N ) ) |
| 5 | 1 4 | mpbid | |- ( N e. ran SucMap -> suc pre N = N ) |
| 6 | df-succl | |- Suc = ran SucMap |
|
| 7 | 5 6 | eleq2s | |- ( N e. Suc -> suc pre N = N ) |