| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfpre2 |
|- ( N e. ran SucMap -> pre N = ( iota m m SucMap N ) ) |
| 2 |
1
|
eqcomd |
|- ( N e. ran SucMap -> ( iota m m SucMap N ) = pre N ) |
| 3 |
|
preex |
|- pre N e. _V |
| 4 |
|
eupre2 |
|- ( N e. ran SucMap -> ( N e. ran SucMap <-> E! m m SucMap N ) ) |
| 5 |
4
|
ibi |
|- ( N e. ran SucMap -> E! m m SucMap N ) |
| 6 |
|
breq1 |
|- ( m = pre N -> ( m SucMap N <-> pre N SucMap N ) ) |
| 7 |
6
|
iota2 |
|- ( ( pre N e. _V /\ E! m m SucMap N ) -> ( pre N SucMap N <-> ( iota m m SucMap N ) = pre N ) ) |
| 8 |
3 5 7
|
sylancr |
|- ( N e. ran SucMap -> ( pre N SucMap N <-> ( iota m m SucMap N ) = pre N ) ) |
| 9 |
2 8
|
mpbird |
|- ( N e. ran SucMap -> pre N SucMap N ) |