Metamath Proof Explorer


Theorem dfpre2

Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion dfpre2
|- ( N e. V -> pre N = ( iota m m SucMap N ) )

Proof

Step Hyp Ref Expression
1 dfpre
 |-  pre N = ( iota m m e. Pred ( SucMap , _V , N ) )
2 elpredg
 |-  ( ( N e. V /\ m e. _V ) -> ( m e. Pred ( SucMap , _V , N ) <-> m SucMap N ) )
3 2 elvd
 |-  ( N e. V -> ( m e. Pred ( SucMap , _V , N ) <-> m SucMap N ) )
4 3 iotabidv
 |-  ( N e. V -> ( iota m m e. Pred ( SucMap , _V , N ) ) = ( iota m m SucMap N ) )
5 1 4 eqtrid
 |-  ( N e. V -> pre N = ( iota m m SucMap N ) )