Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpre2 | |- ( N e. V -> pre N = ( iota m m SucMap N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpre | |- pre N = ( iota m m e. Pred ( SucMap , _V , N ) ) |
|
| 2 | elpredg | |- ( ( N e. V /\ m e. _V ) -> ( m e. Pred ( SucMap , _V , N ) <-> m SucMap N ) ) |
|
| 3 | 2 | elvd | |- ( N e. V -> ( m e. Pred ( SucMap , _V , N ) <-> m SucMap N ) ) |
| 4 | 3 | iotabidv | |- ( N e. V -> ( iota m m e. Pred ( SucMap , _V , N ) ) = ( iota m m SucMap N ) ) |
| 5 | 1 4 | eqtrid | |- ( N e. V -> pre N = ( iota m m SucMap N ) ) |