| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pre |
|- pre N = ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) |
| 2 |
|
dmsucmap |
|- dom SucMap = _V |
| 3 |
|
predeq2 |
|- ( dom SucMap = _V -> Pred ( SucMap , dom SucMap , N ) = Pred ( SucMap , _V , N ) ) |
| 4 |
2 3
|
ax-mp |
|- Pred ( SucMap , dom SucMap , N ) = Pred ( SucMap , _V , N ) |
| 5 |
4
|
eleq2i |
|- ( m e. Pred ( SucMap , dom SucMap , N ) <-> m e. Pred ( SucMap , _V , N ) ) |
| 6 |
5
|
iotabii |
|- ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) = ( iota m m e. Pred ( SucMap , _V , N ) ) |
| 7 |
1 6
|
eqtri |
|- pre N = ( iota m m e. Pred ( SucMap , _V , N ) ) |