Metamath Proof Explorer


Theorem dmsucmap

Description: The domain of the successor map is the universe. (Contributed by Peter Mazsa, 7-Jan-2026)

Ref Expression
Assertion dmsucmap
|- dom SucMap = _V

Proof

Step Hyp Ref Expression
1 ssv
 |-  dom SucMap C_ _V
2 sucexg
 |-  ( m e. _V -> suc m e. _V )
3 2 elv
 |-  suc m e. _V
4 3 isseti
 |-  E. n n = suc m
5 brsucmap
 |-  ( ( m e. _V /\ n e. _V ) -> ( m SucMap n <-> suc m = n ) )
6 5 el2v
 |-  ( m SucMap n <-> suc m = n )
7 eqcom
 |-  ( suc m = n <-> n = suc m )
8 6 7 bitri
 |-  ( m SucMap n <-> n = suc m )
9 8 exbii
 |-  ( E. n m SucMap n <-> E. n n = suc m )
10 4 9 mpbir
 |-  E. n m SucMap n
11 10 rgenw
 |-  A. m e. _V E. n m SucMap n
12 ssdmral
 |-  ( _V C_ dom SucMap <-> A. m e. _V E. n m SucMap n )
13 11 12 mpbir
 |-  _V C_ dom SucMap
14 1 13 eqssi
 |-  dom SucMap = _V