| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssv |
⊢ dom SucMap ⊆ V |
| 2 |
|
sucexg |
⊢ ( 𝑚 ∈ V → suc 𝑚 ∈ V ) |
| 3 |
2
|
elv |
⊢ suc 𝑚 ∈ V |
| 4 |
3
|
isseti |
⊢ ∃ 𝑛 𝑛 = suc 𝑚 |
| 5 |
|
brsucmap |
⊢ ( ( 𝑚 ∈ V ∧ 𝑛 ∈ V ) → ( 𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛 ) ) |
| 6 |
5
|
el2v |
⊢ ( 𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛 ) |
| 7 |
|
eqcom |
⊢ ( suc 𝑚 = 𝑛 ↔ 𝑛 = suc 𝑚 ) |
| 8 |
6 7
|
bitri |
⊢ ( 𝑚 SucMap 𝑛 ↔ 𝑛 = suc 𝑚 ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑛 𝑚 SucMap 𝑛 ↔ ∃ 𝑛 𝑛 = suc 𝑚 ) |
| 10 |
4 9
|
mpbir |
⊢ ∃ 𝑛 𝑚 SucMap 𝑛 |
| 11 |
10
|
rgenw |
⊢ ∀ 𝑚 ∈ V ∃ 𝑛 𝑚 SucMap 𝑛 |
| 12 |
|
ssdmral |
⊢ ( V ⊆ dom SucMap ↔ ∀ 𝑚 ∈ V ∃ 𝑛 𝑚 SucMap 𝑛 ) |
| 13 |
11 12
|
mpbir |
⊢ V ⊆ dom SucMap |
| 14 |
1 13
|
eqssi |
⊢ dom SucMap = V |