Metamath Proof Explorer


Theorem dmsucmap

Description: The domain of the successor map is the universe. (Contributed by Peter Mazsa, 7-Jan-2026)

Ref Expression
Assertion dmsucmap dom SucMap = V

Proof

Step Hyp Ref Expression
1 ssv dom SucMap ⊆ V
2 sucexg ( 𝑚 ∈ V → suc 𝑚 ∈ V )
3 2 elv suc 𝑚 ∈ V
4 3 isseti 𝑛 𝑛 = suc 𝑚
5 brsucmap ( ( 𝑚 ∈ V ∧ 𝑛 ∈ V ) → ( 𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛 ) )
6 5 el2v ( 𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛 )
7 eqcom ( suc 𝑚 = 𝑛𝑛 = suc 𝑚 )
8 6 7 bitri ( 𝑚 SucMap 𝑛𝑛 = suc 𝑚 )
9 8 exbii ( ∃ 𝑛 𝑚 SucMap 𝑛 ↔ ∃ 𝑛 𝑛 = suc 𝑚 )
10 4 9 mpbir 𝑛 𝑚 SucMap 𝑛
11 10 rgenw 𝑚 ∈ V ∃ 𝑛 𝑚 SucMap 𝑛
12 ssdmral ( V ⊆ dom SucMap ↔ ∀ 𝑚 ∈ V ∃ 𝑛 𝑚 SucMap 𝑛 )
13 11 12 mpbir V ⊆ dom SucMap
14 1 13 eqssi dom SucMap = V