Description: Subclass of a domain. (Contributed by Peter Mazsa, 15-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdmral | ⊢ ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝑅 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 | ⊢ ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅 ) | |
| 2 | eldmg | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑥 𝑅 𝑦 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑥 𝑅 𝑦 ) |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝑅 𝑦 ) |
| 5 | 1 4 | bitri | ⊢ ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝑅 𝑦 ) |