Metamath Proof Explorer


Theorem ssdmral

Description: Subclass of a domain. (Contributed by Peter Mazsa, 15-Sep-2018)

Ref Expression
Assertion ssdmral ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥𝐴𝑦 𝑥 𝑅 𝑦 )

Proof

Step Hyp Ref Expression
1 dfss3 ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥𝐴 𝑥 ∈ dom 𝑅 )
2 eldmg ( 𝑥 ∈ V → ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑥 𝑅 𝑦 ) )
3 2 elv ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑥 𝑅 𝑦 )
4 3 ralbii ( ∀ 𝑥𝐴 𝑥 ∈ dom 𝑅 ↔ ∀ 𝑥𝐴𝑦 𝑥 𝑅 𝑦 )
5 1 4 bitri ( 𝐴 ⊆ dom 𝑅 ↔ ∀ 𝑥𝐴𝑦 𝑥 𝑅 𝑦 )