Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
ssdmral
Next ⟩
Range Cartesian product
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssdmral
Description:
Subclass of a domain.
(Contributed by
Peter Mazsa
, 15-Sep-2018)
Ref
Expression
Assertion
ssdmral
⊢
A
⊆
dom
⁡
R
↔
∀
x
∈
A
∃
y
x
R
y
Proof
Step
Hyp
Ref
Expression
1
dfss3
⊢
A
⊆
dom
⁡
R
↔
∀
x
∈
A
x
∈
dom
⁡
R
2
eldmg
⊢
x
∈
V
→
x
∈
dom
⁡
R
↔
∃
y
x
R
y
3
2
elv
⊢
x
∈
dom
⁡
R
↔
∃
y
x
R
y
4
3
ralbii
⊢
∀
x
∈
A
x
∈
dom
⁡
R
↔
∀
x
∈
A
∃
y
x
R
y
5
1
4
bitri
⊢
A
⊆
dom
⁡
R
↔
∀
x
∈
A
∃
y
x
R
y