| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pre |
⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) |
| 2 |
|
dmsucmap |
⊢ dom SucMap = V |
| 3 |
|
predeq2 |
⊢ ( dom SucMap = V → Pred ( SucMap , dom SucMap , 𝑁 ) = Pred ( SucMap , V , 𝑁 ) ) |
| 4 |
2 3
|
ax-mp |
⊢ Pred ( SucMap , dom SucMap , 𝑁 ) = Pred ( SucMap , V , 𝑁 ) |
| 5 |
4
|
eleq2i |
⊢ ( 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ↔ 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) |
| 6 |
5
|
iotabii |
⊢ ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) |
| 7 |
1 6
|
eqtri |
⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) |